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1. INTRODUCTION

Increasing demands on forest resources require comprehensive,
consistent and up-to-date information on those resources at spatial scales
appropriate for management decision-making and for scientific analysis.
While such information can be derived using coarse spatial resolution
satellite data (e.g. Tucker et al. 1984; Zhu and Evans 1994; Cihlar et al.
1996; Cihlar et al., Chapter 12), many regional applications require more
spatial and thematic details than can be derived by using coarse resolution
imagery. High spatial resolution satellite data such as IKONOS and Quick
Bird images (Aplin et al. 1997), though usable for deriving detailed forest
information (Culvenor, Chapter 9), are currently not feasible for wall-to-wall
regional applications because of extremely high data cost, huge data volume,
and lack of contiguous coverage over large areas. Forest studies over large
areas have often been accomplished using data acquired by intermediate
spatial resolution sensor systems, including the Multi-Spectral Scanner
(MSS), Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus
(ETM+) of Landsat, the High Resolution Visible (HRV) of the Systeme Pour
I’Observation de la Terre (SPOT), and the Linear Image Self-Scanner (LISS)
of the Indian Remote Sensing satellite. These sensor systems are more
appropriate for regional applications because they can routinely produce
spatially contiguous data over large areas at relatively low cost, and can be
used to derive a host of forest attributes (e.g. Cohen et al. 1995; Kimes et al.
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1999; Cohen et al. 2001; Huang et al. 2001; Sugumaran 2001). Of the above
intermediate spatial resolution satellites, Landsat is perhaps the most widely
used in various types of land remote sensing applications, in part because it
has provided more extensive spatial and temporal coverage of the globe than
any other intermediate resolution satellite. Spatially contiguous Landsat data
have been developed for many regions of the globe (e.g. Lunetta and
Sturdevant 1993; Fuller et al. 1994b; Skole et al. 1997), and a circa 1990
Landsat image data set covering the entire land area of the globe has also
been developed recently (Jones and Smith 2001). An acquisition strategy
aimed at acquiring at least one cloud free image per year for the entire land
area of the globe has been initiated for Landsat-7 (Arvidson et al. 2001).
This will probably ensure the continued dominance of Landsat in the near
future.

Extracting forest information from Landsat imagery has been a vigorous
research activity over the past 30 years of Landsat history. Early forest
applications used both digital and analogue methods to analyse satellite
imagery. Images were often digitally enhanced for printing, with actual
interpretation done on the hard-copy print. With the evolving need for more
efficient and comprehensive analysis, a wide range of digital methods were
developed (Townshend 1992; Hall et al. 1995), many of which were tested
within local areas covered by single Landsat scenes. Rapid development in
computer hardware and software over the last decade provided the
computing capacity for deriving forest information from multiple satellite
scenes. (Here, and throughout this Chapter, a scene refers to an area covered
by a Landsat path/row, while an image refers to a specific image
acquisition.) For example, Bauer (1994) mapped seven forest classes in five
north-eastern Minnesota counties using six TM scenes. At national scales,
over 20 land cover classes, including three forest classes, were mapped using
TM images for Great Britain (Fuller et al. 1994a) and the conterminous U.S.
(Vogelmann et al. 2001).

Use of a single TM image for forest studies can be a very complex
process. Some of the challenges include radiometric and geometric
correction, impact of topography and the atmosphere on image quality, and
diversity and spatial heterogeneity of land cover, among others (Jensen
1986). Deriving forest information from multiple scenes further compounds
these issues. For example, cloud cover often makes it difficult to obtain
usable images for an entire study area within a specific time window.
Another challenge is among-scene variability arising from differences in
atmospheric condition, viewing and illumination geometry, vegetation
phenology and soil moisture content. As a result, information extraction
methods that work well in a single-scene application may fall apart in multi-
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scene applications, or may be less effective when trained on one scene and
applied to neighbouring scenes (Pax-Lenney et al. 2001). A third challenge
is lack of reliable reference data sets. Such data sets are required for training
many classification algorithms (see Franklin et al., Chapter 10) and for
accuracy assessment (Czaplewski, Chapter 5). Because reference data are
expensive to collect, at regional scales they are often compiled from
different sources, provided such sources exist. Regardless, reference data
sets from different sources are often collected by different parties at different
times using different methods, and often have varying levels of reliability
(DeFries and Townshend 1993). Use of such reference data sets may result
in inconsistencies and varying reliability in derived data products.

In this Chapter, we will address these challenges through two case
studies — the land cover mapping project of the Utah Gap Analysis Program
(GAP) (Homer et al. 1997) and a pilot study of the Multi-Resolution Land
Characteristics (MRLC) 2000 program, which for simplicity are referred to
as Utah GAP land cover program and MRLC 2000 pilot study, respectively.
While the unsupervised clustering approach employed in the Utah GAP land
cover program has been used to develop many large area classifications (e.g.
Cihlar et al. 1996; Cohen et al. 1998; Vogelmann et al. 1998), the supervised
classification tree method used in the MRLC 2000 pilot study is gaining
popularity due to its promising performance in regional and global
applications (e.g. Friedl et al. 1999; Hansen et al. 2000). In the following
sections, we first present the two case studies, with more emphasis on the
MRLC 2000 pilot study. Results of the two case studies are then evaluated
using an independent reference data set, following which some of the major
issues on regional forest land cover characterisation using medium spatial
resolution satellite data are discussed.

2. THE UTAH GAP LAND COVER PROGRAM
2.1 Background

In 1990, the U.S. Geological Survey (USGS) Gap Analysis Program
(GAP) was established to map terrestrial vertebrate species and evaluate
their protection status on the land where they occur throughout the United
States (Edwards et al. 1993; Scott et al. 1993). Central to this analysis was a
vegetation cover-type map which, when linked to wildlife habitat relation
models, predicts the spatial distribution of animal species. Because no
regional land cover information existed at the time when the program
started, one of the requirements of this program was to develop a state-wide
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vegetation cover-type map from Landsat data. This case study describes the
development of this vegetation map for the state of Utah.

2.2 Image Standardisation and Mosaic Creation

Large study areas requiring the spatial resolution of Landsat TM data
invariably cover multiple scenes. Analysis and classification of multiple
scenes can be carried out either on individual scenes or multi-scene mosaics.
Single-scene classification potentially offers better accuracy because of
reduced pixel sample size and spectral variability. However, classifying
single scenes independently within a multi-scene region can require a greater
investment in time, training data collection, and subsequent edge-matching
than the multi-scene mosaic approach. On the other hand, the mosaic
approach has a possible disadvantage of increased within-class spectral
variability and potentially higher confusion between spectrally similar cover
types. For this application, the mosaic approach offered the best solution to
our mapping objectives.

Spatially, 14 Landsat TM scenes cover Utah. Twenty-four images were
required to provide a complete, cloud free mosaic for a single summer
season, including 14 primary base scenes and ten secondary cloud patch
scenes. The primary base scenes were acquired between June and August of
1988 and 1989. The dates for the additional ten images used for cloud
patching varied from 1984 to 1993, but were all in the summer growing
season.

A two-step approach of atmospheric standardisation and histogram
adjustment was chosen to normalise image-to-image variations. First, the
image acquired at path 37, row 33 was chosen as a “master” image because
of its central location in the state (allowing maximum overlay with adjacent
scenes) and because it covered a significant range of the ecological
conditions likely to be encountered in the state. This image was adjusted for
atmospheric haze by plotting each of the reflective spectral bands against the
middle infrared band 7 (2.08 to 2.35 pum) as described in Jensen (1986).
Then, a histogram adjustment method based on histogram bias (i.e.,
histogram shape is maintained but relative position is altered) was used to
normalise among-scene variations due to the additive components of
atmospheric effects. This method does not alter within-slave-scene unique
radiometric characteristics, allowing for recognition of localised phenomena
in digital classification. Selected areas of overlap between master and slave
were compared band-by-band, and the average difference was calculated for
each band. Band-by-band differences from the overlap sample areas were
used as bias values to adjust radiometrically the slave to the master. Once a
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slave image was radiometrically matched to the master, it became a master
for its adjacent scenes. This method effectively reduced the among-scene
variations in this study area, resulting in a near seamless mosaic (Colour
Plate 16).

To reduce the spectral variability within individual classes and possible
confusion between spectrally similar but ecologically different cover types,
the image mosaic was segmented into three ecoregions, i.e., Wasatch-Uinta,
Colorado Plateau, and Northern Great Basin. The Wasatch-Uinta ecoregion
is characterised by high mountains and plateaux containing typical rocky
mountain flora such as evergreen and deciduous forest. The Colorado
plateau is characterised by lower elevation canyon lands, plateaux and buttes
supporting arid and semi-arid shrub, grass, and woodlands. Typical
landscapes in the Northern Great Basin ecoregion include mountain ranges
and broad valleys trending north to south (Colour Plate 16, after Omemik
(1987)).

2.3 Training Data

Though an unsupervised clustering approach was employed in this case
study, training data were needed to link spectral clusters to vegetation cover
types. The required training data were collected through interpreting low
altitude aerial photos and conducting field work, with field location
determined using Global Positioning System (GPS) units. A total of 657
field training sites were used in the Wasatch-Uinta ecoregion, of which 356
(53 percent) were collected using GPS units in the field, 221 (35 percent)
using low-altitude aerial photographs, and 80 (12 percent) using both
methods. Of the 518 training sites in the Colorado Plateau ecoregion, 422
(81 percent) were GPS located, 59 (12 percent) were photo-interpreted, and
37 (7 percent) were collected using both methods. In the Northern Basin and
Range ecoregion, 490 training sites (86 percent) were GPS based, 26 (4
percent) were photo-interpreted, and 57 (10 percent) were collected using
both methods, totalling 573 training sites.

2.4 Classification and Modelling

The three ecoregions were subset from the state image mosaic and
processed using the ISODATA algorithm implemented in the ERDAS image
processing package to generate unsupervised spectral clusters (Tou and
Gonzalez 1974). Before clustering, agricultural and urban areas were masked
from the image using an existing Geographic Information System database
to further reduce spectral variability. A total of 125 clusters were initially
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generated in the Wasatch-Uinta ecoregion, with 150 each in the Colorado
Plateau and Northern Basin and Range. A minimum-distance-to-the-means
classification algorithm was used to assign individual pixels to a spectral
class.

Cover-type modelling consisted of two phases: statistical association of
spectral classes with cover-types and post-classification ecological
modelling based on ancillary information. The first phase of modelling
included two sets of summary statistics generated from the weighted training
polygon values: the proportion of each cover-type weighting ordered by
spectral class and spectral class polygon weighting values ordered by cover
type. These two sets of summary statistics were used in concert during
ancillary modelling to provide balance between possible commission and
omission €errors.

The second phase of modelling incorporated ancillary data, including 3-
arc-second resolution digital elevation, slope, aspect, and vegetation cover-
type range polygons, to clarify cover-type associations by using post-
classification stratification (Fleming and Hoffer 1979; Hutchinson 1982).
Polygons delineating the general distribution of vegetation cover-type were
developed from existing literature and maps, and were used to limit the
geographic extent of some cover types. All localised ancillary parameters
detailed in literature and field work were standardised to regional scales
before being used in modelling. An intensive effort was made to ensure as
much objectivity as possible in generating spectral class/ancillary data
models. This second phase modelling was extensive for some spectral
classes.

2.5 Results

A 38-class land cover map with sixteen forest classes was developed in
this case study (Homer et al. 1997). An accuracy assessment based on a
mixed sampling design that considered statistical validity, accessibility and
efficacy yielded an overall map accuracy of 75.3 % for the entire state
(Edwards et al. 1998). Further evaluation of this classification using an
independent reference data set will be presented in a later section.
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3. MRLC 2000 PILOT STUDY
3.1 Background

The MRLC consortium was initiated in early 1990s to address the need
for consistent national and regional land cover data for the United States
(Loveland and Shaw 1996). Through this consortium, a 1992-vintage
National Land Cover Dataset (NLCD 1992) was developed for the
conterminous United States (Vogelmann et al. 2001). MRLC is currently
developing a second generation land cover product, NLCD 2000, using
2000-vintage Landsat-7 ETM+ images and relevant ancillary data. The
guiding principles in designing NLCD 2000 included the need to: 1) develop
methods that are as objective, consistent and repeatable as possible for
generating standardised land cover products, 2) constrain methods to be
simple, efficient and transferable to others, 3) develop land cover products
flexible enough to meet the potentially diverse requirements of multiple
users, 4) provide users with increased access to intermediate database
products and derivatives enabling local application, and S) maintain
reasonable compatibility with NLCD 1992. The purpose of this MRLC 2000
pilot study is to develop a prototype procedure that follows the above
guiding principles and is efficient and robust for use in all regions of the
U.S. The MRLC 2000 classification scheme consists of over 20 land cover

classes (Homer et al. 2002). We will examine only the forest classes in this
Chapter.

3.2 Data and methods

The overall procedure of this pilot study consists of pre-processing of
satellite imagery, ancillary data and reference data, classification using a
decision tree method, and accuracy assessment using both cross-validation
and independent test data sets (Figure 14-1). The study area primarily
covered the Rocky Mountains of Utah, extending from the Cache National
Forest, located north of Salt Lake City, to Zion National Park in the south. A
large part of this study area overlapped with the Wasatch-Uinta ecoregion of
the Utah GAP land cover mapping program (Colour Plate 16).
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Figure 14-1. A flowchart of data and methods used in the MRLC 2000 pilot study.
3.2.1 Satellite imagery and ancillary data

Nine ETM+ scenes were required to cover the entire study area (Table
14-1). For each scene, near cloud free ETM+ images acquired on three dates
between 1999 and 2001 were used to capture vegetation dynamics over a
growing season and to maximise land cover type separability. Image
selection was based on vegetation greenness profiles defined by a multi-year
normalized difference vegetation index data set derived from the Advanced
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Very High Resolution Radiometer (Yang et al. 2001). Two additional
images acquired in the summer of 2000 were used to patch the clouds seen
in two summer leaf-on images. All images were geometrically and
radiometrically corrected using standard methods at the USGS EROS Data
Center (Irish 2000). Terrain correction using the USGS l-arc second
National Elevation Dataset was performed to improve geolocation accuracy.
To reduce among-scene variability due to different illumination geometry
(Colour Plate 17A), raw digital numbers were converted to at-satellite
reflectance for the 6 reflective bands, and to at-satellite temperature for the
thermal band according to Markham and Barker (1986) and the Landsat-7
Science Data User’s Handbook (Irish 2000). Colour Plate 17B shows that a
large portion of the among-scene variations were removed using this method
(also demonstrated in Huang et al. 2002b). All 7 bands of the images were
resampled to a 30 m spatial resolution. Tasseled-cap brightness, greenness
and wetness were calculated using at-satellite reflectance based coefficients
(Huang et al. 2002b). Mosaics of the study area were developed using the at-
satellite reflectance images and corresponding tasseled-cap images. Colour
Plate 17C shows the summer leaf-on image mosaic.

Table 14-1. Landsat ETM+ images used in the MRLC 2000 pilot study. The unit for sun
elevation is degree.

Spring Summer ~_Fall/lwinter
Landsat  Acquisition Sun Acquisition Sun
path/row date elevation date elevation
36/32 04/28/2000 58 06/15/2000 65
37/31 05/08/2001 60 06/06/2000 64
37/32 05/08/2001 60 06/06/2000 65
37/33 05/05/2000 61 06/06/2000 65
37/34 05/05/2000 62 06/06/2000 66
38/31 05/28/2000 63 06/29/2000 64
38/32 05/28/2000 64 08/14/1999 57
38/33 04/26/2000 59 07/31/2000 61
38/34 04/26/2000 60 07/312000 61

Ancillary data included the USGS 1-arc second National Elevation
Dataset and three derivatives, i.e., slope, aspect and a topographic position
index characterising a pixel’s position relative to ridges and valleys. In
addition, three soil attributes, i.e. available water capacity, soil carbon
content and a soil quality index, were derived from the State Soil Geographic
(STATSGO) Data Base (USDA 1991). All ancillary data layers were
rasterized or resampled to have a spatial resolution of 30 m.
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3.2.2 Reference Data Sets

Two reference data sets were available to this study. One was collected
through the Forest Inventory and Analysis (FLA) program of the U.S. Forest
Service in mid-1990. Through intensive field work, the FIA program
provided detailed forest attributes at individual tree, sub-plot and plot levels.
Covering an area of about 2 x 2 ETM+ pixels, an FIA plot consists of 4 to 5
sub-plots, each with a radius of about 7.3 meter. Considering the pixel size
of ETM+ imagery and possible geolocation errors, only plot level data were
deemed appropriate for use with the ETM+ imagery. There were 3037 FIA
plot in this study area. Each FIA plot was classified using two classification
schemes, forest/non-forest and a 4-class scheme. In addition, the 1852 forest
plots were also classified using a forest type group scheme. Both the 4-class
scheme and the forest type group scheme will be listed in the following
section.

The other reference data set consisted of 1295 field points collected by
the Fire Science Lab of the Rocky Mountain Research Station (RMRS) of
the U.S. Forest Service in late 1990s. These points were distributed within
the mid-southern portion of the study area. The collected information
allowed the labelling of each point using the forest/non-forest and 4-class
schemes. This data set was used to partially evaluate the classification results
developed using FIA plot data.

3.23 Classification schemes

As mentioned in the previous section, three classification schemes were
considered in this study: forest/non-forest, a 4-class scheme consisting of
non-forest, deciduous, evergreen, and mixed, and a forest type group
scheme. The FIA program requires a forest/non-forest map to implement a
stratified sampling of forested land in order to produce accurate estimates of
forest attributes (McRoberts et al. 2002). Deciduous, evergreen and mixed
forest are the common forest categories in many regional land cover
classification systems, including the MRLC 2000 classification scheme.
Information on forest type group is required for species conservation
planning, fire management and many other applications. Based on the FIA
plot data, there were 9 major forest type groups in this area: pinyon/juniper,
douglas-fir, ponderosa pine, fir/spruce/mountain hemlock, lodgepole pine,
other western softwoods, aspen/birch, western oak and other western
hardwoods.
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3.24 Decision Tree Classifier

The ample reference data points available to this study made it [%ossible
to employ a supervised approach for deriving forest land cover
classifications (Richards 1993). The popular supervised classification
algorithms include the maximum likelihood classifier, neural networks and
decision tree methods (Townshend 1992; Hall et al. 1995; Franklin et al.,
Chapter 10). The decision tree method was chosen for this study because it
1) is non-parametric and therefore independent of the distribution of class
signature, 2) can handle both continuous and non-continuous variables, 3)
generates interpretable classification rules, 4) is fast to train and is often as
accurate as and sometimes more accurate than, many other classifiers
(Hansen et al. 1996; Huang et al. 2002a). Tree classifiers have been used to
develop land cover classifications at regional to global scales (e.g. Friedl and
Brodley 1997; DeFries et al. 1998; Friedl et al. 1999; Hansen et al. 2000).
The decision tree program used in this study, C5, employs an information
gain ratio criterion in tree development and pruning. A general description of
the functions of this program is given in a tutorial availadle at
h_ttp://www.rulequest.com/seeS-unix.html. A detailed description of an
earlier version of this program, C4.5, was provided by Quinlan (1993).

One of the useful functions of C§ is boosting, a technique designed to
improve classification accuracy (Bauer and Kohavi 1998). With this
function, the program develops a sequence of decision trees, with each
subsequent one trying to fix the misclassification errors in the previous tree.
Each decision tree makes an independent prediction, and the final prediction
is a weighted vote of the predictions of all trees. This function often
improves classification accuracy by 5 % to 10 % (e.g. Friedl et al. i999;
Chan et al. 2001).

325 Accuracy assessment

Accuracy estimates of the classifications were derived in two ways. One
Wwas to use the independent test data set collected by the Fire Science Lab of
the U. S. Forest Service RMRS. The other was to use a cross-validation
function of Cs. Cross-validation is designed to derive prompt accu‘racy
estimates even when only a limited number of reference data samples are
available for both training and accuracy assessment (Henery 1994). For an
N-fold cross-validation, the training data set is divided into N equal-sized
subsets. Accuracy estimates are derived by using each subset to evaluate the
classification developed using the remaining training samples. The mean



400 Regional forest land cover characterisation using medium spatial
resolution satellite data

accuracy and its standard error represent those of the classification
developed using all reference samples.

33 Results

Two classifications, one with and the other without the use of boosting,
were developed for each of the three classification schemes — forest/non-
forest, 4-class and forest type group, using FIA plot data and Landsat-7
ETM+ images. Classification accuracies derived using cross-validation and
the independent reference data set collected by the Fire Science Lab of
RMRS are reported in Table 14-2. With the boosting function of the C5
program, overall accuracies of around 80 % were achieved for the
forest/non-forest and the 4-class classifications and about 65 % for forest
type group classification. The boosting function improved classification
accuracy by about 2 to 9 percent in absolute values. Similar improvements
using the boosting function have been reported in other studies (e.g. Chan et
al. 2001). These classifications were visually evaluated by field crew
members of RMRS and the Utah GAP Analysis program of Utah State
University. Both parties agreed that these classifications were reasonably
accurate.

Table 14-2. Classification accuracy estimates for the MRLC 2000 pilot study. The units for
both accuracy and standard error are percent (%).

Classification level  Forest/non-forest 4-class Forest type group

Accuracy Std. Accuracy Std.
Error Error

Cross-validation

- Without boosting 80.4 0.4 78.0 04 56.6 0.9

- With boosting 82.7 0.4 812 0.6 65.8 1.2

Independent assessment

- Without boosting 75.7 - 75.3 - - -

- With boosting 79.0 - 83.4 - - -

4. COMPARISON OF THE TWO CASE STUDIES

Using an independent reference data set provided by the FIA program of
U.S. Forest Service RMRS, we were able to compare the classifications
derived through the Utah GAP land cover program and the MRLC 2000
pilot study in the Wasatch-Uinta area, where the two study areas overlapped.
This reference data set consisted of 68,358 points regularly spaced at a 1km
interval in both the east-west and south-north directions. Based on aerial
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photos acquired in the 1980s, each point was labelled with one of the
following classes: non-forest, conifer, pinyon/juniper, aspen and other
hardwoods. This reference data set allowed an independent assessment of the
classifications developed in the two case studies by aggregating those
classifications to this S-class level as well as to the 4-class and forest/non-
forest levels. The derived overall accuracies as well as both user’s and
producer’s accuracies are reported in Table 14-3.

Table 14-3. Accuracies (%) estimated using 68,358 photo-interpreted points for classifications
developed in the two case studies. Accuracies for the mixed class were unavailable because
the reference data did not have a mixed class. MRLC 2000 classifications were developed
using C5’s boosting function.

_ Users Producer’s Overall
Utah MRLC Utah MRLC Utah MRLC
GAP 2000 GAP 2000 GAP 2000
forest/non-forest 70.7 78.4
non-forest 62.3 69.7 68.7 75.9
forest 77.3 86.2 72.0 82.1
4-class 62.8 713
non-forest 62.3 69.7 68.7 82.1
deciduous 55.6 62.4 49.1 523
evergreen 68.3 71.0 63.2 69.2
mixed - -
S-class 58.5 66.5
non-forest 62.3 69.7 68.7 82.1
conifer 63.5 71.7 56.4 64.9
other hardwoods 424 53.6 359 295
aspen 44.0 48.7 46.2 56.7
pinyon/juniper 58.2 66.3 56.2 59.2

The overall accuracies of the classifications at the forest/non-forest, 4-
class and 5-class levels were 70.7 %, 62.8 % and 58.5 % for the Utah GAP
land cover program, and 78.4 %, 71.3 % and 66.5 % for the MRLC 2000
pilot study, respectively. The differences in overall accuracy between the
two sets of classifications were about 8 % at all three levels. Classifications
of the MRLC 2000 pilot study also had class specific user’s accuracies of
about 4 % - 11 %, and producer’s accuracies of about 3 % - 13 % (except for
the other hardwoods class) higher than the Utah GAP classifications. With
the exception of the 4-class classification, the overall accuracies of the other
two classifications of the MRLC 2000 pilot study were comparable to those
estimated through cross-validation (Table 14-2, with boosting) or using the
independent test data set collected by the Fire Science Lab, suggesting that
these estimates were not significantly biased from each other. Colour Plate
18 shows a window of the two classifications at the 5-class level and the
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summer leaf-on ETM+ image used in the MRLC 2000 pilot study. The
overall accuracy of the 4-class map was about 10 % lower than the cross-
validation estimate (Table 14-2, with boosting) and the one derived using the
independent test data set collected by the Fire Science Lab. This might be
partially due to the lack of a mixed class in the photo-interpreted reference
data set.

The higher classification accuracies of the MRLC 2000 pilot study
compared to the Utah GAP land cover program can be attributed to at least
two factors. One is use of multi-temporal imagery, which often yields better
classification accuracies than using single-date imagery (e.g. Coppin and
Bauer 1994; Lunetta and Balogh 1999). Whereas only a single-date summer
leaf-on image mosaic was used in the Utah GAP land cover program, image
mosaics of three dates representing spring, summer and fall/winter were used
in the MRLC 2000 pilot study. The other factor is use of a high quality
training data set — FIA plot data. This data set consists of points collected
following a probability-based sampling design. Each point was labelled
according to intensive field work, and was revisited periodically. Collected
nation-wide, this data set is highly valuable for use with intermediate spatial
resolution satellite imagery in regional forest studies. To ensure the
confidentiality, security and integrity of the data points, however, use of this
data set should be arranged under security agreements.

S. DISCUSSION

The two case studies presented in this work demonstrate the feasibility
of extracting forest information at regional scales using multiple Landsat
scenes as a single mosaic. This information extraction process consists of a
sequence of steps, including normalising among-scene variations
independent of land surface conditions, selecting appropriate classification
algorithms and validating classification results. As a result of the increased
acquisition capacity of many local Landsat receiving stations, together with
the high priority being given to the acquisition of global coverage by
Landsat-7 (Arvidson et al. 2001), data availability has become less
problematical in regional Landsat applications. The methods used in each
step, however, can affect the reliability, efficiency and consistency of
deriving forest information from Landsat data.
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5.1 Normalisation of among-scene variability

Images of neighbouring scenes, especially of neighbouring Landsat
paths, are often acquired on different dates. They can differ in atmospheric
conditions, illumination geometry, and vegetation phenology, resulting in
increased within-class signature variability and reduced among-class
separability when these images are analysed as a mosaic. It is therefore
desirable to normalise such among-scene variations before information
extraction. Designed to retrieve surface reflectance from digital number,
physically based atmospheric correction algorithms are, in theory, preferable
for standardising the impact of the atmosphere and illumination geometry.
However, use of available atmospheric correction algorithms on Landsat
imagery over large areas has very limited success, partially because many
required parameters concerning in situ atmospheric conditions are often not
available or cannot be derived reliably (Cohen et al. 2001). Use of pseudo-
invariant objects whose reflective properties remain relatively stable may
provide a partial solution (Schott et al. 1988), provided enough pseudo-
invariant objects can be identified in the overlap areas of neighbouring
scenes. The histogram bias adjustment method introduced in the Utah GAP
case study is similar to a dark object subtraction approach to atmospheric
correction. One of the limitations of this approach is that it only normalises
additive components of atmospheric effects (Teillet and Fedosejevs 1995). It
can not handle non-additive components properly. The at-satellite
reflectance method described in the MRLC 2000 pilot study effectively
normalized the impact of illumination geometry, a non-additive component.
For clear and near-cloud-free images, use of this method alone may generate
satisfactory image mosaics. However, when varying hazy conditions exist
among the images, applying the at-satellite reflectance method followed by
the histogram bias adjustment method may substantially improve the quality
of an image mosaic.

No efforts were made to normalise the among-scene variations arising
from differences in vegetation phenology in the two case studies. Because
such variations are functions of a number of factors, including vegetation
type, agricultural activity, and perhaps topographically-induced soil moisture
availability, there are currently no practical solutions to this problem. In the
MRLC 2000 pilot study, we tried to address this problem by using scene
identification number as an input to the decision tree program, and
effectively removed some seamlines seen in the image mosaic from the
derived classifications (Colour Plate 18).
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52 Classification algorithm selection

The two case studies represent two different approaches to land cover
classification, one supervised and the other unsupervised. While
classifications developed in the MRLC 2000 pilot study had higher overall
accuracies than those developed in the Utah GAP land cover program, it was
not clear if the differences were partially due to selection of classification
algorithms. As discussed in a previous section, two other factors, i.e., use of
multi-temporal images and better reference data, may also have contributed
to this. Whether to use a supervised or unsupervised method in a specific
project depends on many factors. Supervised methods generally require
substantial amounts of reliable reference data in order to be trained
adequately. Because of this, Richards (1993) suggested that the supervised
maximum likelihood classifier might be more time demanding than an
unsupervised approach. However, results from the two case studies suggest
that, with reliable and up-to-date reference data sets like the F1A plot data
readily available, a supervised method is often more efficient and cost-
effective than an unsupervised method. We estimated that, for land cover
mapping with similar thematic content, the MRLC 2000 pilot study took less
than one third of the effort the Utah GAP program took. Supervised methods
will also probably be more efficient for remapping efforts, because for most
areas the majority of the training points used in a previous mapping effort
are not likely to change from one cover type to another during the mapping
interval. The unchanged training points should be reusable after being
identified through quality check. In addition to the advantages of the
decision tree program discussed in the MRLC 2000 pilot study, this program
can also produce instant accuracy estimates for the classification being
developed, which may be relatively unbiased if the training data points are
collected following a probability-based sampling design and are not spatially
auto-correlated.

Unfortunately, for many large area forest land cover mapping activities,
there are often insufficient reference data samples, and developing a large
reference data set with adequate samples may not always be feasible for
many practical reasons, including insufficient resources, time constraints and
access problems. While it is often difficult to use supervised approaches in
such cases, the Utah GAP land cover program and other studies (e.g.
Vogelmann et al. 1998) have demonstrated that an unsupervised approach
can yield satisfactory results.
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Accuracy assessment

Validation of classification results at a regional scale is a considerable
task. A statistically valid accuracy assessment can take tremendous amounts
of resources and time. Even if the required resources are available, it often
take several months to several years to produce valid accuracy values after a
classification is developed. To avoid this problem, it is highly recommended
that the accuracy assessment be planned during the design phase of a
mapping project. An accuracy assessment plan should include three
components: a probability-based sampling design, a protocol for labelling
reference data points, and an appropriate statistical procedure for deriving
accuracy estimates (Czaplewski, Chapter 5; Stehman and Czaplewski 1998).

Alternatively, the cross-validation technique employed in the MRLC
2000 pilot study can be used to produce instant accuracy estimates. Whether
these estimates are biased or not depends on the sampling design and spatial
coverage of the training data points. Results from the MRLC 2000 pilot
study suggest that such estimates might be unbiased if the training data set is
collected following probability based sampling design and covers the entire
study area. While inflated accuracies may result when significant spatial
auto-correlations exist among the training samples (Campbell 1981), the
cross-validation technique can, at the very least, provide users with
preliminary information regarding the accuracy of the products they want to
use.

The validity of classification accuracy estimates can be affected by two
additional factors. One is possible labelling error of reference data points
(Congalton and Green 1993), which may arise from errors of field crew
members or photo interpreters, or from possible temporal discrepancies
between reference data and satellite image. The other is location error that
may exist between the reference data points and satellite image.
Unfortunately, it is often difficult to quantitatively assess such errors and
their impact on the validity of derived accuracy estimates.

Beyond classification

Landsat data can be used not only to develop forest land cover
classifications, but also to estimate a suite of forest attributes, including tree
canopy density, age, height, basal area, and tree bole diameter at breast
height, among others (e.g. Cohen et al. 1995; Cohen et al. 2001).
Information on such attributes at intermediate spatial resolutions is required
for fire fuel modelling and many other forest management applications. In
addition to the classifications developed in this Chapter, we have also
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estimated sub-pixel tree canopy density at the 30m resolution for the entire
MRLC pilot study area using a regression tree technique. Shown to be robust
for approximating complex non-linear relationships (Huang and Townshend
2002), the regression tree method was also used to estimate tree canopy
density from ETM+ imagery in three two-scene areas in Virginia,
Utah/Idaho, and Oregon (Huang et al. 2001). In these studies, the mean
absolute difference and correlation coefficient (r) between predicted and
actual tree canopy density were about 9 to 12 percent tree cover and 0.8 to
0.9, respectively.

6. CONCLUSIONS

Through two case studies, we have presented two approaches to
extracting forest information from Landsat imagery in multi-scene regions.
In both case studies, classifications were performed on multi-scene mosaics,
which was more efficient and helped to achieve a higher degree of class
consistency across multiple scenes than classifying single scenes
individually. The two image pre-processing procedures — histogram bias
adjustment and at-satellite reflectance method, were found effective for
normalising the among-scene variations of clear and near cloud-free images
in a semi-arid environment. Both the supervised decision tree classifier and
the unsupervised approach produced satisfactory classification results. With
adequate, well-distributed training data points readily available, the decision
tree method should be more efficient and consistent than an unsupervised
approach, especially for an area that needs to be remapped periodically. With
cross-validation, the decision tree program can also generate instant
accuracy estimates, which may be reasonably unbiased if the training points
follow a probability based sampling design. This can be highly valuable,
because statistically valid accuracy assessment over large areas is often very
expensive. When only limited or no reference data points are available,
however, the unsupervised approach may be more appropriate for extracting
forest information at regional scales.
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